
Junction conditions in general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 1785

(http://iopscience.iop.org/0305-4470/15/6/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 1785-1797. Printed in Great Britain 

Junction conditions in general relativity 
C K Raju? 
Physical and Earth Sciences Division, Indian Statistical Institute, Calcutta 700 035, India 

Received 9 February 1981, in final form 27 November 1981 

Abstract. Earlier work on the problem of junction conditions is briefly reviewed. An 
analytical formalism is developed to deal with the occurrence of jump discontinuities in 
the g,, or  their first derivatives across a hypersurface P. It is shown that the equations 
of relativity remain meaningful ai Z, even when Z does not inherit a unique intrinsic 
geometry, so that the g,, are discontinuous across P in  natural coordinates. The spherically 
symmetric surface layer at the Schwarzschild-Minkowski junction is used to illustrate 
these techniques, and to establish rigorously the existence of C" solutions of the Einstein 
equations and the conservation equations. The possible validity of relativity at the 
microscopic level is examined, and it is concluded that, if relativity is valid at the microscopic 
level, then i t  is likely that the g,, are not globally continuously differentiable. 

1. Introduction 

The problem of junction conditions in general relativity may be stated thus: at a sharp 
boundary between matter and empty space-time, how smooth should the 10 distinct 
functions (of the coordinates) g,, be? This problem, and its generalisations, occur in 
the study of thin shells of matter (ejected by a nova, for example), collapsing stars 
(to model the boundary of the star), gravitational shock waves, and gravitational 
screening. Fundamentally, a resolution of this problem necessitates an elucidation of 
the mathematical assumptions underlying the theory of relativity. 

The study of this problem was initiated by Lanczos (1922, 1924), who noticed 
that the problem, as stated above, is not well-posed. It is necessary to distinguish 
between 'genuine' discontinuities in the derivatives of the metric tensor, and 'spurious' 
discontinuities arising from a particular choice of the coordinate system. Later work 
on allied problems highlighted this difficulty by ignoring it and reaching peculiar 
conclusions (e.g. Raychaudhuri 1953, Israel 1958). 

The introduction of admissible coordinates by Lichnerowicz (1955) considerably 
clarified the situation. The need to introduce admissible coordinates may be under- 
stood as follows. A statement of the Einstein equations, and the conservation 
equations, assumes that the g,, may be differentiated thrice. That is, it must be posited 
that space-time admits a Cz atlas in which the g,, are thrice continuously differenti- 
able$. The last condition may be relaxed somewhat since the conservation equations 
still make sense, in the theory of generalised functions (Gel'fand and Shilov 1964), 
if the second derivatives of the g,, have, at most, a simple discontinuity across a 
smooth hypersurface. The extension to a finite number of (non-intersecting) hypersur- 
faces is trivial. This is precisely Lichnerowicz's postulate: that space-time admits a 

+ Present address: Department of Statistics, University of Poona, Ganeshkhind, Pune 41 1 007, India. 
$ If a manifold admits a C2 atlas, it admits a C" or  C" atlas. 
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C 2  atlas in which the g,, are twice continuously differentiable except at certain smooth 
hypersurfaces where the second derivatives may have a simple discontinuity. The 
Einstein equations are, then, covariant under admissible coordinate transformations 
( C 2  diffeomorphisms). 

In practice, admissible coordinates may not be the most convenient, and O’Brien 
and Synge (1952) utilised a scalar invariant to state the junction conditions in the 
form (Synge 1960) 

G’=f.,cp” = rc1 (1.1) 
where Gr denotes the Einstein tensor, f(x) = 0 is the equation of the hypersurface 
Z, ( p y  is a contravariant vector field that undergoes parallel transport along any 
pre-assigned set of curves which cross Z, and [C] indicates any quantity that is 
continuous across Z. The invariant may be evaluated in (non-admissible) coordinate 
systems that do not match continuously on I;. The coordinate systems, of course, 
must be related to admissible coordinates by admissible transformations on either 
side of 2. 

Israel (1966) gave an elegant generalisation of these conditions for the case where 
the hypersurface Z is not null. A smooth hypersurface divides space-time into two 
half-spaces V+ and V-, and Israel (1966) defined a singular hypersurface as one 
which has different extrinsic curvatures (second fundamental forms) associated with 
its embeddings in V+ and V-. If we use gaussian coordinates based on Z (these are 
admissible if we accept Lichnerowicz’s postulate), then the normal derivatives of the 
gij  have a jump across Z, the g,, themselves being continuous across E. The last 
assertion holds because V+ and V- must induce the same intrinsic geometry on Z 
(Misner et a1 1973). That is, in natural coordinates (the analogue of Lichnerowicz’s 
admissible coordinates), the g,, need only be of class CO across a singular hypersurface. 

Using the Einstein equations applied to the half-spaces Vi and V-, Israel (1966) 
deduced a three-dimensional law of conservation for surface layers in vacuo. As in 
the case of the O’Brien-Synge junction conditions, one may utilise coordinates which 
do not match continuously on Z. Equations, in intrinsic form, for gravitational shocks 
have been developed by Choquet-Bruhat (1968). 

Dautcourt (1964), Papapetrou and Treder (1959) and Papapetrou and Hamoui 
(1 968) have developed an analytic approach to the study of singular hypersurfaces. 
This formalism applies without modification to null hypersurfaces, or to the case 
where a surface layer occurs in conjunction with a boundary surface. Papapetrou and 
Hamoui (1968) obtained the equations of motion for surface layers in four-dimensional 
form, and proved that the surface energy three-tensor, introduced heuristically by 
Israel (1966), is just the projection onto Z of the generalised material energy four- 
tensor. 

The motivation behind the present approach is, firstly, to clarify the status of the 
equations of relativity at a hypersurface of discontinuity. Using Raju’s (1982) 
non-linear theory of distributions, it is shown that the Einstein equations remain 
meaningful at Z, even when Z does not inherit a unique intrinsic geometry (ggY 
discontinuous in natural coordinates). Physically, the existence of a hypersurface with 
a non-unique intrinsic geometry would correspond to the phenomenon of gravitational 
screening. It is also possible to generalise to the case where the hypersurface is not 
smooth. Before investigating these generalisations, however, it is necessary to establish 
the existence of solutions to these equations. This would also serve to clarify the 
relationship between this approach and earlier approaches. Therefore, in the present 
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paper we establish the existence of CO solutions of the Einstein equations, and show 
that our approach leads to a considerable simplification of the formalism of Papapetrou 
and Hamoui (1968). 

Secondly, we utilise a microphysical criterion (the existence of matter in the form 
of particles) to investigate the physical validity of postulates regarding admissible 
coordinates and the smoothness of the g,,,. The extrapolation of relativity to the 
microphysical domain may appear highly questionable, in view of the current opinion 
that relativity is applicable at the micro-level only after it has been integrated with 
quantum mechanics. This paper justifies the extrapolation on the grounds of internal 
consistency and Raju’s (1981) interpretation of quantum mechanics as a theory of 
extended shell-like particles. 

2. Algebra of distributions 

We begin with the problem regarding the meaning and validity of the equations of 
relativity when the g,, or their first derivatives g,,, (in a given C 2  atlas) have simple 
discontinuities across a hypersurface C. If only the g,,, are discontinuous across X, 
the Christoffel symbols are not well-defined on Z. If the g,, are discontinuous across 
Z, the Ricci tensor, for instance, would involve entities such as 6’, S being the Dirac 
delta-function. Earlier authors (Dautcourt 1964, Israel 1966, Papapetrou and Hamoui 
1968, Choquet-Bruhat 1968) have tackled this problem by replacing the usual 
equations by a more meaningful set of equations at C. 

In the present approach we will, instead, assign some meaning to the above entities. 
The physical aspect of the problem introduces the additional constraint of defining 
the above entities in such a manner that our belief in the equations of relativity, at 
the hypersurface of discontinuity, continues to be justified. This problem has been 
solved by Raju (1982) using the techniques of ‘non-standard analysis’ to ensure that 
our continued belief in the Einstein equations would not be reduced to a phenomeno- 
logical one. 

The definitions given in Raju (1982), of products and compositions with distribu- 
tions, are as follows. We let D, D’ denote the space of test functions and distributions, 
respectively, and *D and *D’ their corresponding non-standard extensions (Stroyan 
and Luxemburg 1976). For f, g ED’ ,  define 

f . g = l i m  *(f ,*g)  

fn =f  @ a n  (2.1) 

n = w  

( fn*g,h)=(g,fn.h)  V h E D  

where 0 denotes convolution, 6, is a sequence converging to the 6-function, and 
(g, h )  denotes the value of the functional g at h. The * in (2.1) denotes the non- 
standard extension of the sequence of distributions fn ‘g, and the notation limn=, 
refers to an evaluation of the wth term of this sequence for a fixed positive infinite 
integer w.  With the above definition, f - g  always exists in *D’. Thus, 6’ = 6,(0)6 is 
an infinite distribution. 

The final results are independent of the choice of 6, or w because we have a 
theorem that asserts, for instance, that the meaning of the equation 

a 6 2 + b 6 + c = 0  ( 2 . 2 )  
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for standard real numbers a, b, c is simply that 

a = b = c  = O .  (2.3) 

We observe that no new phenomenology has been introduced, and that the results 
derived by using non-standard techniques could very well have been derived without 
using them (Stroyan and Luxembourg 1976). 

The associative and commutative laws fail, in general, although the product may 
be symmetrised by defining 

(2.4) 

For multiplication by discontinuous functions, we have the following useful result: if 
f is a function with a simple discontinuity at 0, then 

f .  s = i ( f ( O + )  +f(o-))s. (2.5) 

If g is an infinitely differentiable function and f~ D' compositions are defined by 

f0 g = 8 f *  g + g . f ) .  

f ( g ( x ) )  = lim fn(g(x) )*  (2.6) 
n = w  

f ( g ( x ) )  defined by (2.6) exists, and agrees with the usual definition if g has the 
real roots xl, x 2 ,  . . . , x,, with g ' ( x i )  # 0 for 1 s i s n. The chain rule is valid, and the 
definitions remain meaningful even if g has multiple roots. 

3. The general formalism 

We begin with some notation. If Z is a smooth hypersurface, let 

x' = xv+ = characteristic function of V+ 

x -  = 1 - x + .  (3.1) 

If we use coordinates such that the equation of Z is f ( x )  = 0, and that of V+ is f ( x )  > 0, 
then x +  may be written as e ( f ( x ) )  where is the Heaviside function. 

Any function of the coordinates, h ( x ) ,  can be written as 

h = h'x'+ h - x - .  (3.2) 

If h has, at most, a simple discontinuity at C, we define 

[ h ] ( P )  = lim h'- lim h -  

h 1 ( P )  =i( lim h'+ lim h-)  

Q + P  R - P  

Q + P  R - P  

(3.3) 

where P E  C, and Q and R tend to P through V' and V -  respectively. (3.3) makes 
sense even if the components of the metric tensor have a simple discontinuity at E. 

The following properties follow immediately from the results stated in § 2. 

(3.4) 

( X + Y  = 62 (3.5) 

- -  - X + ' X + = X +  x ' X  = x  x+ * x- = 0 x -  * s z  = $65 

where 
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i.e. if the equation of C is f ( x )  = 0, then 

X L  =f , , s ( f ( x ) ) .  
For later use we also record 

With the above notation, we may put 

If we impose the conditions 

[g,Yl = 0 
then from the usual formulae 

we obtain, in view of (3.4) and (3.9), 

It follows that the Ricci tensor is given by 

R,, = R ZYx’ + R ; , f  + r,, 

r,, = - [ ~ ; , I x >  + [r&Ix: 
and that the material energy tensor is given by 

1789 

(3.6) 

(3.7) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

r = gwvrWw. 

The conservation equations at 2 can now be stated in the usual form 

t’””:, = 0. (3.14) 

Some comments on (3.14) are in order. Firstly, although some of the Christoffel 
symbols are discontinuous and, therefore, undefined at C, (3.14) still makes sense 
because only products of the Christoffel symbols with fir appear in (3.14) and these 
are well-defined. 

Secondly, (3.14) and (3.9) may be regarded as a set of equations which fix Cauchy 
data on C, for the Einstein equations in, say, V + ,  provided the gravitational field is 
known in V - :  if tlly # 0, (3.14) is a set of eight equations of the form 

a @ 8 +  b’S = 0 i.e.a’=O b@=O. (3.15) 
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Together with (3.9), these conditions are not sufficient to fix Cauchy data, unless it 
is possible to transform to a system of coordinates in which fewer of the g,v,u have 
jump discontinuities across Z. In gaussian coordinates, for example, only six additional 
conditions are required. However, in general, if the gpv,u are discontinuous across Z, 
gaussian coordinates can only be obtained by means of a transformation that is C 2  
in V+ and V- ,  but only C’ on Z (Synge 1960). 

This raises the question: are the equations (3.14) covariant under a transformation 
that is C 2  in V+ and V- ,  but only C’ on E? Clearly, under admissible transformations 
r,, is a tensor, because [I%], being the difference of two affine connections, is a tensor, 
and ,y+ is a scalar density on account of the chain rule. Therefore, (3.14) is covariant 
under admissible transformations. 

To deal with a transformation that is only C’ on Z, we make an intermediate 
transformation to the coordinates ( x o ,  z ,  x 2 ,  x 3 )  where z =f(n). The expression for 
r,, takes the form 

(3.16) 

The first term on the right-hand side transforms correctly, since it is obtained from 
the product of the derivatives of two scalar densities. The second term on the right-hand 
side transforms correctly provided 

[ a 2 ~ / a i w a i u ]  = o (3.17) 

where i denotes the transformed coordinates. More generally, (3.14) will be covariant 
if the left-hand side of (3.17) adds, to the material energy tensor, a term with vanishing 
formal divergence. 

This generalisation is not very useful, however, since it is not always possible to 
obtain gaussian coordinates using a transformation which satisfies these conditions. 
To ensure that the Cauchy problem remains well-posed, it is therefore necessary to 
restrict the class of coordinates to those that can be obtained from gaussian coordinates 
by admissible transformations (natural coordinates), or by transformations that are 
only C’ on Z but satisfy (3.17). With these restrictions on the coordinates, (3.14) 
becomes an overdetermined system, indicating that certain consistency conditions 
have to be satisfied for the existence of hypersurfaces of discontinuity. 

While the present approach has the disadvantage that it is not coordinate-free, it 
has the advantage that it can be extended to situations where Israel’s (1966) geometric 
approach is not applicable. To see this, we consider the case where Z does not inherit 
a unique geometry from Vf and V-. In this situation, in natural coordinates, the 
conditions (3.9) no longer apply. The Christoffel symbols now take on the form 

r = r + + y:~L:. (3.18) 

Although the commutative law fails, in general, the Ricci tensor continues to be 
well-defined because Sr - X+ = ,y + SZ. Using formulae of the type 

*+.a’ L: -1 -2Sz-6: I x+. 6; = $6; (3.19) 

in addition to (3.4), the distribution part of the material energy tensor takes on the 
general form 

tpY = ap”SZ+b”’S; +c””S~. (3.20) 
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Since Sr*Sk # 8; *SE, the conservation equations (3.14) can now be interpreted 
in three inequivalent ways: 

(3.21) 

(3.22) 

(3.23) 

where (S$)’=2SrOSk in (3.23). If one of (3.21) or (3.22) is satisfied, so is (3.23), 
but all three equations are equivalent if and only if 

where y&, and b p u  are given by (3.18) and (3.20). The conditions (3.24) are identically 
satisfied, for instance, when Z is a null surface and tSu = 0, i.e. in the case of a strong 
gravitational shock. In view of (2.3), the equations (3.23) and (3.24) together corres- 
pond to a set of 32 equations, and form an overdetermined system. 

The above considerations are of a formal nature, since we have not shown the 
existence of discontinuous solutions of the Einstein equations and the conservation 
equations. The problem regarding the existence of discontinuous solutions will be 
considered separately, and in this paper we only establish, quite rigorously, the 
existence of CO solutions. Before concluding this section, we remark that the present 
approach can also be used to study the case where the hypersurface of discontinuity 
is not smooth and has, for example, a ‘corner’ at some point. However, it seems best 
to postpone a discussion of this case till more results are available for the Cauchy 
problem in non-smooth domains. 

4. The spherically symmetric surface layer 

4.1. Preliminaries 

The above techniques are primarily useful when, as in the case of shock waves, the 
g,, are known, a priori, only on one side of the hypersurface of discontinuity. In the 
case of the spherically symmetric surface layer the g,, on both sides are fixed by the 
requirements of symmetry and continuity. The general techniques, therefore, are not 
required for this special case. However, this simple case provides a CO solution of 
the Einstein equations and illustrates the manner in which the present techniques can 
be put to use. 

The problem, conventionally, is to determine the motion of the spherically sym- 
metric surface layer of matter at the junction between the Schwarzschild and Min- 
kowski metrics. It is assumed that the g,, are continuous across the hypersurface of 
discontinuity, and that some of their first derivatives have discontinuities. We will 
adopt the radiative coordinates used by Papapetrou and Hamoui (1968): xo = r, x 1  = U, 
x2  = 8, x3 = p. We assume that the hypersurface of discontinuity, Z, is spacelike, so 
that its equation can always be written (locally) in the form 

r = f ( u ) .  (4.1) 

We also suppose that r > 2m, so that the external metric has no singularity. 
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The external and internal metrics, respectively, are given by 

ds: =(1-2m/r)du2+2du dr-r2(d82+sinZ 8 dcp’) r > f ( u )  
(4.2) 

dS? = d U 2 + 2 d U  dR -R2(d8’+sin2 e dcp’) R < F ( U )  

where R = F ( U )  is the equation of the hypersurface in the interior coordinates 
(R, U, 8, cp). Carrying out the change of variables r + z = r -f(u), R + 2 = R - F (  U ) ,  
the external and internal metrics may be written as 

z > o  

(4.3) z<o. 

du2+2du dz - ( z  +f)2(d82+sin2 8 dcp2) 

dS? = (1 + 2F’) d U 2 + 2 d U  d Z  - (Z +F)’(d02 +sin2 8 dp2) 

We suppose that the coordinates (U, 2, 8,cp) can be obtained from the coordinates 
(U, z,  8, cp) by the change of variables 

U = a ( u )  

z = y ( u ) z  Y > O  

and that the junction conditions 

(4.4) 

are satisfied. (4.4) and (4.5) together yield 

F ( U )  =fb) 
a ’ y  = 1 

a’( a ‘ + 2f’) = 1 - 2m/ f + 2f’. 
(4.6) 

These equations were obtained by Papapetrou and Hamoui (1968). 
In the present calculation we require the same coordinates throughout, and in the 

coordinates (U, z ,  8, +o) the external and internal metrics are given (using the junction 
conditions) by 

du2+2du dz - ( z  +f)2(d82+sin2 8 dcp2) z > o  
(4.7) 

du2+2du dz-(yz+f)’(d8’+sin2 8dcp’) z C O .  

To simplify the derivation of the equations of motion, we put 

a+ = a+(u, z )  = 1 -2m/(z +f)+2f’  

a- = a-(u, z )  = 1 - 2m/f+ 2f’ + 2a‘y’z 

b + = b + ( ~ ,  z ) = - ( z + ~ ) ’  

b - = b -(U, z ) = - ( YZ + f)’ 
a =a+x++a-x -  

b = b+Xt + b - x - .  

(4.8) 
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Denoting by a l ,  etc, it follows that 
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(4.9) 

(4.10) 

The junction conditions (4.5) have been used in writing down the above equations. 

4.2. The equations of motion 

Because of the new notation and techniques, the various steps in the derivation of 
the equations of motion are given below in detail. In (4.11)-(4.13) the superscripts + 

and - have been omitted with the understanding that either superscript may be used 
consistently in any equation. In the new notation, the non-vanishing components of 
the metric tensor are given by 

goo = a 

go1 = 1 

g22 = b 

g33 = b sin2 e 
go' = 1 g22 = b-' 

g" = a g3, = b-' sin-2 0, 

Similarly, the non-vanishing Christoff el symbols are given by 

r-2  -1 -1  02-2b bo 

r& = ib-'bl 

l-0 - 1 
00 - -2a1 

r0 22 - - -2bi 1 

r:, = r;* sin2 e r:, = -sin e cos e 
r3 -1 -1  03-26 bo 

r:3 = ib-'bl 

r1 -1 

l-1 01 -1 - 2a1 
r1 -1 

00 - 2(aa1 +ad 

r:, =cot 8 22 - 2(abi -bo) 

r:, = r:, sin2 e. 
The distribution part of the Ricci tensor is given, according to (3.12), by 

1 roo = [roois = -44 1 [ a l ] s  

rol = [r;,+ 2r:2]s = - ~ [ a ~ I s  = r10 

r l l  = 2[r?2]6 = 6-' l[b1]6 

r22 = - [r2,]8 = -+U I [bl]S 

r33 = - [r,,]s = r22  sin 8. 

1 

1 

1 2 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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The same tensor, with raised suffixes, is given by 

and its trace by 

(4.15) 

r = -2ab-' I [b116 - 2[allS. (4.16) 

The components of the material energy tensor are given by 

too = 6-' I [bl]S 
01 11 t = O = t  

t22  = 1 [bl]S + 4b-l I [a& 
(4.17) 

t33 = t22/sin2 e. 
The last two of the equations (3.14) are identically satisfied, and the other two are 

o v  00 0 2 2 -  t : y  = t ,o + (r,", + r;,)to0 + 2r2,t - o 
tlV:Y =root +2r:2t22 = 0. 1 00 

(4.18) 

Explicitly, we have the equations 

(PI [bl]),O-;alb-' 1 [b1]-;ab-2bl J [b l l+  b-%o I[bll - W b 1  I [all = 0 

(aa1+ ao) 1 [bl]+ (ab1 -bo) 1 [ab-% +a11 = 0 
(4.19) 

along with (4.6) which can be restated as 

ff'y = 1 

ffI(ff '+2f)=a) .  
(4.20) 

We show below that the first two equations, (4.19), reduce to identities by virtue of 
(4.20). 

Thus, the first of (4.19) can be written in the form 

a1 ( y 2 -  1)-2(y - 1)f = 2m/f (4.21) 

where we have used the values of the bars and brackets, given in (4.9) and (4.10). 
From (4.20) 

(4.22) 

Substituting in (4.21) we have an identity by virtue of the value of a1 given in (4.10). 
Similarly, the second of (4.19) can be shown to be an identity by repeated use of (4.22). 

Therefore, for the case under consideration the equations (3.14) are identical with 
the equations (3.9), and it has been rigorously established that the spherically sym- 
metric surface layer at the Schwarzschild-Minkowski junction provides a CO solution 
of the Einstein equations and the conservation equations. 

2 a l y  -2 fy -1=0 .  
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We observe that the equations of motion are underdetermined, and an extra 
condition, like an equation of state, is required to specify the motion of the hypersurface 
completely. There is no need to go into this problem here, as our conclusions are in 
agreement with the conclusions reached by earlier approaches, and the motion of the 
hypersurface has been studied, in detail, by Israel (1966), Papapetrou and Hamoui 
(1968, 1979) and Evans (1977). 

5. Relativistic characterisation of matter 

In the above sections we analysed the problem of junction conditions from a mathe- 
matical standpoint, and concluded that the equations of relativity remain meaningful 
even if the smoothness conditions on the g,, are relaxed. In this section we propose 
to adopt a more physical point of view: what degree of smoothness for the g,, is 
compatible with observed matter distributions? No serious attempt has been made 
to answer this question, since discontinuities or singularities in the matter tensor are 
usually permitted, as a matter of convenience, to simplify the study of hypersurfaces 
across which there are large changes in the g,,,; and it is often stated (e.g. Hawking 
and Ellis 1973) that one may reasonably assume the g,, to be of class C2 globally. 

It is possible to give, at least, a partial answer to the question posed above by 
appealing to the fact that matter exists in discrete clusters at the microscopic level. 
This procedure raises a fundamental issue. Since the nexus between relativity and 
elementary particle theory is so hazy as to be almost imperceptible, at present, can 
it be seriously asserted that relativity is at all relevant to a description of the distribution 
of matter corresponding to an elementary particle? In fact, is there any justification 
for extrapolating relativity to the attoscopic level? 

According to the prevalent view, there is no such justification, and relativity may 
be used at the microscopic level only after it has been successfully integrated with 
quantum field theory. Objectively, the prevalent view appears to be fallacious on two 
counts. Firstly, the classical theory of relativity is formulated without regard to scale, 
and there is no definite evidence for its failure at the microscopic level. The prevalent 
view, therefore, condemns relativity, at the microscopic level, without a trial. 

Secondly, unlike the electromagnetic field, no theoretical inconsistency would arise 
if the gravitational field were left unquantised. In fact, since the notion of a space-time 
manifold is a primitive notion underlying the formalism of conventional quantum 
theory, if the gravitational field is quantised, quantum theory would have to be modified 
alongside. Therefore, a decision regarding the quantisation of the gravitational field 
would seem to be best based on an interpretation of quantum mechanics. 

We propose to use Raju’s (1981) interpretation of quantum mechanics as a 
semiclassical theory of extended particles. According to this interpretation, quantum 
mechanical particles have an extended shell-like structure, and relativity, assumed to 
be valid at the microscopic level, can be used to examine this structure. This interpreta- 
tion does postulate the occurrence of certain fluctuations in the metric tensor, against 
a smoothed-out background. While these fluctuations are not specifically quantum 
mechanical in origin, they do lead to analogues of quantum mechanical behaviour. 
With this interpretation of quantum mechanics, the subsequent results could be 
regarded as referring to the averaged-out background metric. 

In a relativistic characterisation of the distribution of matter corresponding to an 
elementary particle, with non-zero rest mass, the simplest possibility which arises is 
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that of a point mass. This possibility has been rejected by Dirac (1962) on the following 
grounds: a point mass would behave like a black hole, real particles do not behave 
like black holes, hence real particles are not point masses. However, given the 
empirically determined masses and charges of real elementary particles, the Reissner- 
Nordstrom solution assures us that the above argument is not applicable to real, 
charged particles. Given, further, that real particles are often charged, Dirac's (1962) 
argument loses much of its significance. Nevertheless, even in the Reissner-Nordstrom 
metric, there is a singularity at the origin, so, even if we were to accept the point of 
view that real particles are pointlike, the g,, would not be continuous everywhere. 

The other possibility is that of an extended mass distribution. The stability of such 
a mass distribution is a difficult problem, especially in the case of charged particles, 
because of the inordinate imbalance between gravitational and electromagnetic forces. 
Given that electrons, for instance, are reasonably stable, if we subscribe to the view 
that real particles are extended, we seem to be faced with the alternatives of introducing 
new phenomenology or abandoning the existing theory of relativity at the microscopic 
level. However, in view of the earlier results on stationary surface layers (e.g. 
Papapetrou and Hamoui 1968) there is a third possibility; namely, the g,, may not 
be of class C' as is usually supposed. If we accept the theory of relativity, and Occam's 
razor, we are forced to accept the third possibility. 

The conclusions reached above may be summarised by saying that the theory of 
relativity, in its present form, is consistent with the existence of particles only if the 
g,, are (globally) at most of class Co. This conclusion calls for some rethinking on 
the postulates of the Hawking-Penrose singularity theory. Much of the work in 
singularity theory uses hypotheses which imply that the g,, are at least of class C' 
(Hawking and Ellis 1973). Therefore, according to the above arguments, these results 
are not consistent with the existence of matter in the form of particles and, hence, 
are not applicable to the real universe. 

6. Conclusions 

The equations of relativity remain meaningful even if the g,, have a simple discon- 
tinuity across a smooth hypersurface, in natural coordinates. If the theory of relativity 
is valid at the microscopic level, it is likely that the g,, are not globally continuously 
differentiable. 
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